

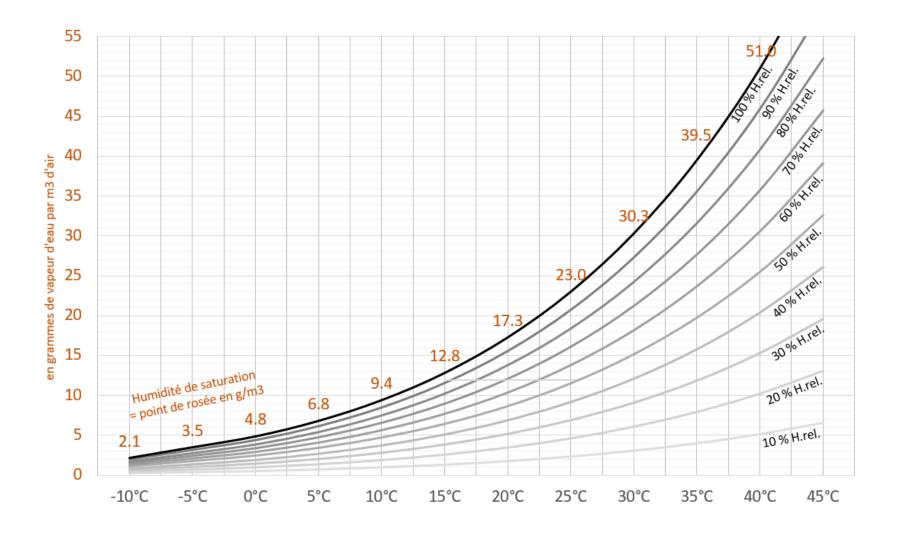
Repères sur le séchage du foin en grange

Partie 2. Traitement de l'air

Pierre Aeby
Collaborateur scientifique
Grangeneuve, Institut agricole de l'Etat de Fribourg
Route de Grangeneuve 31
CH-1725 Posieux
pierre.aeby@fr.ch

Sans indications particulières, photos de l'auteur Version automne 2024

Direction des institutions, de l'agriculture et des forêts **DIAF**Direktion der Institutionen und der Land- und Forstwirtschaft **ILFD**


Deux grandes options pour traiter l'air

- Echauffement de l'air
 - Récupération de chaleur sous toiture ou sous photovoltaïques
 - Chaudières (bois / mazout / gaz)
 - Eau chaude (méthanisation / chauffage à distance)
- > Déshumidification de l'air

https://betterorganix.com/blog/what-is-how-to-calculate-vapour-pressureyficit/#:~:text=To%20Get%20VPD%2C%20we%20need,And,201/OII A%2C%20viv%20have%20VPD

Capacité de l'air à absorber l'humidité

Récupérer air sous toiture = énergie gratuite

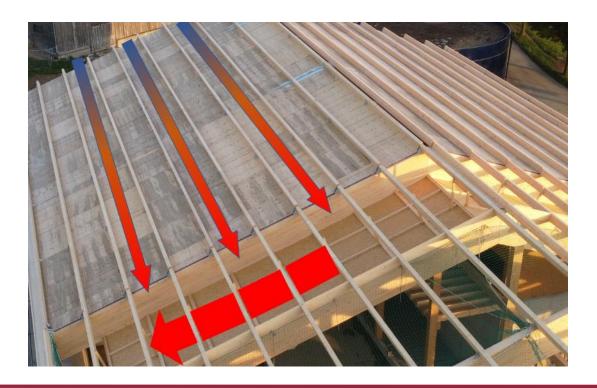
- Puissance calculée : 300 à 380 W par m² de récupérateur (Source = calculation sur 23 projets Fribourgeois, 2022)
 - = puissance ~200 kW pour récupérateur 600 m²
- Gain +5 à +15°C
- Photovoltaïque >= Tôle > Fibrociment >> Tuile
- Investissements de 15'000 à 50'000 CHF

Voir capsule 6, cours en ligne Grangeneuve 2021
 https://www.grangeneuve-conseil.ch/index.php/fr/2-uncategorised/438-capsules-formation-continue-en-agriculture

Planifier une grande surface de toiture

- Surface capteur 3 à 5 x surface du séchoir
- Standard = aspiration en pignons, échauffement entre panneschevrons et collecte dans canal vers ventilateur
- Toiture non isolée
- Capteur encore pertinent sur un pan Nord :

Apport relatif de l'ensoleillement direct par rapport à une exposition idéale, plein sud avec une inclinaison de 20°C


Exposition (orientation par rapport au sud)	Inclinaison du toit					
	10°	20°	30°	40°	50°	
	%	%	%	%	%	
0° sud	98	100	99	96	89	
30	97	99	98	94	88	
60	95	94	92	89	83	
90 ouest/est	91	88	84	79	72	
120	88	81	73	65	57	
150	86	76	65	52	39	
180 nord	85	74	62	47	32	

Optimiser la longueur d'échauffement

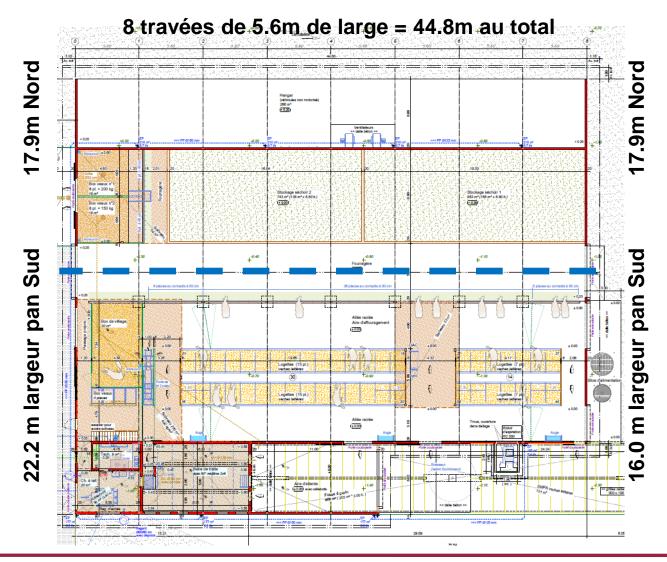
- Grande longueur = gros échauffement
- Mais augmentation du frottement
- Perte de pression max à planifier = 1.0 hPa
 - → 30 m longueur

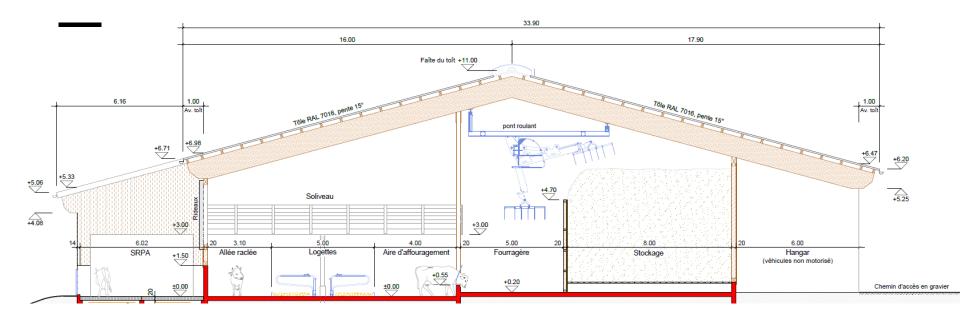
Respecter le débit d'air du ventilateur

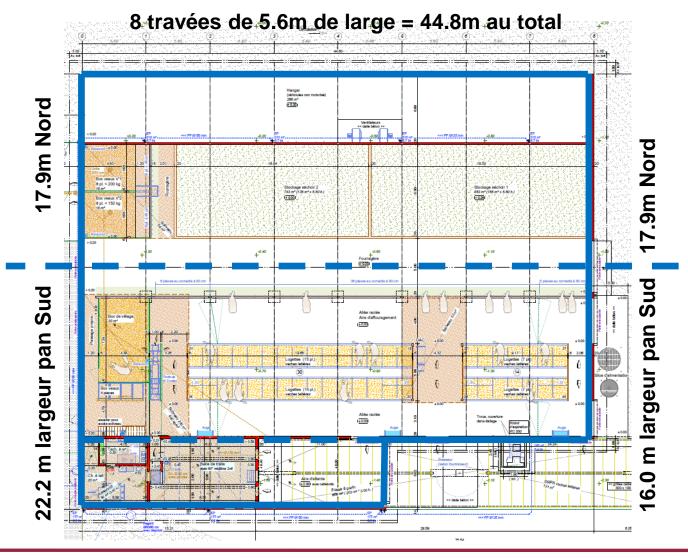
- 60'000 m³ d'air / heure pour séchoir de 150 m²
- Vitesse de l'air de 2 à 6m / sec
- Hauteur des pannes déterminante pour assurer le débit du ventilateur

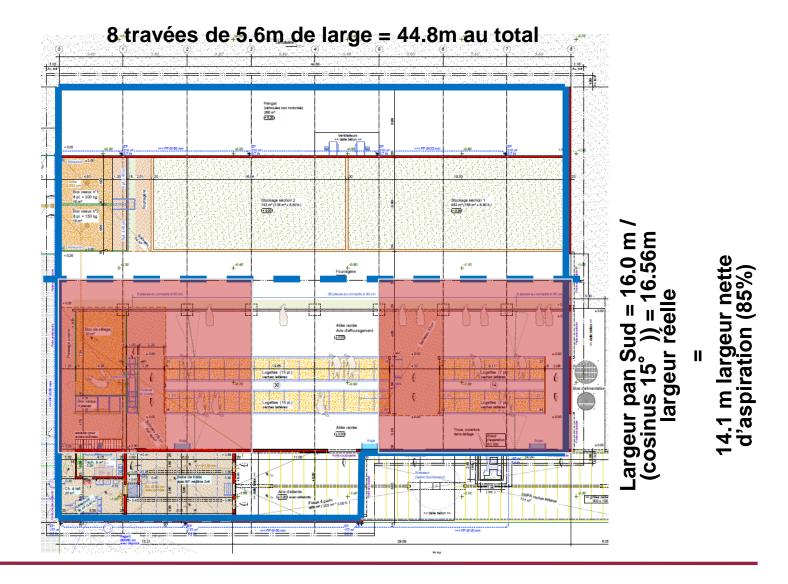
Récupération de chaleur sous toiture

Récupération de chaleur sous toiture

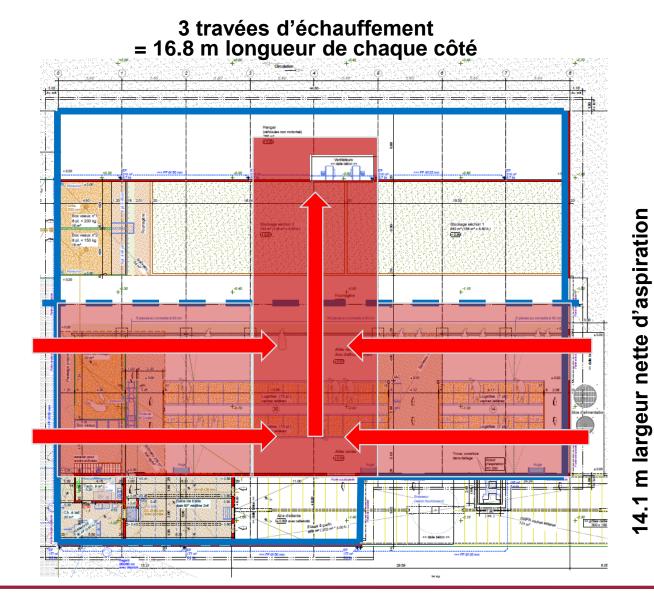


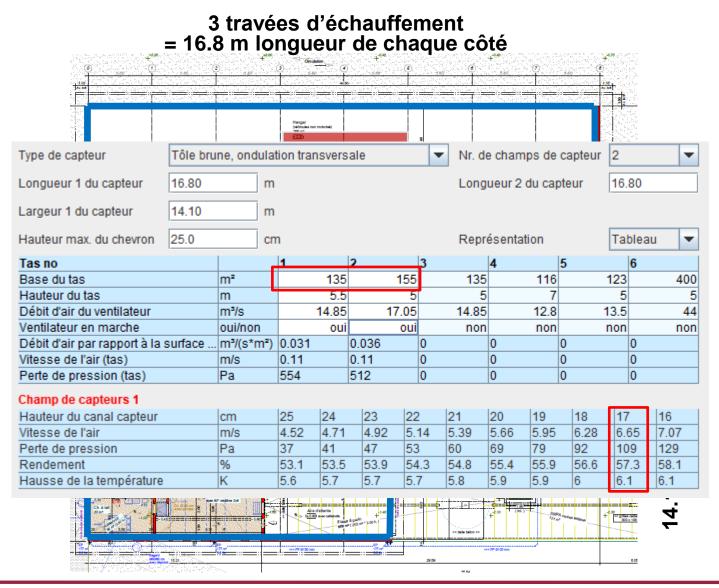

Respecter le débit d'air, avec des ouvertures suffisamment larges

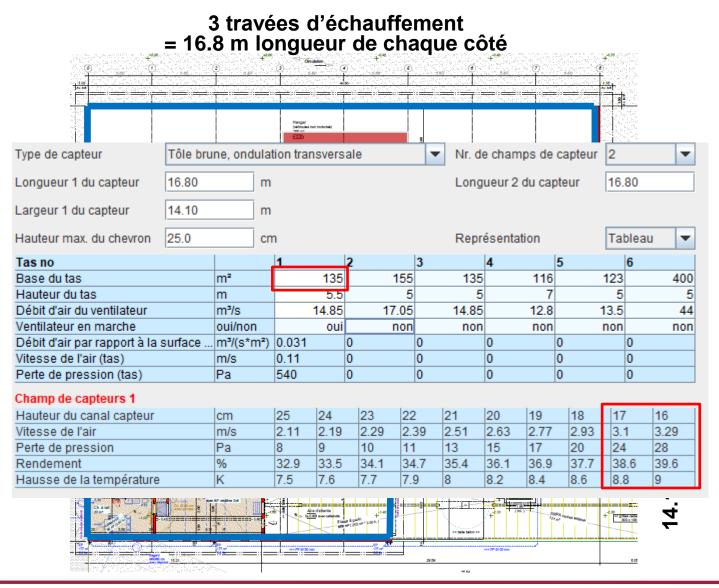


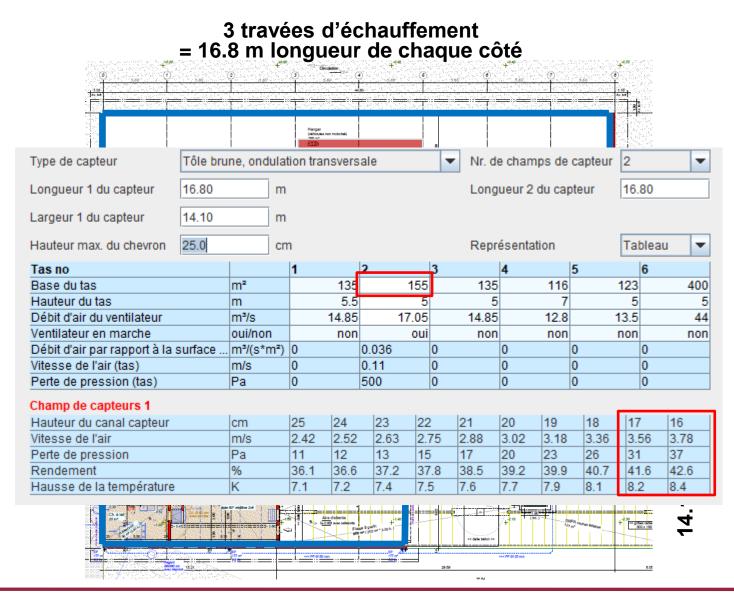

Paramètres à connaître :

- Grandeur du séchoir (ou des séchoirs si plusieurs en même temps)
- Définition du débit d'air
- Pan(s) du toit à utiliser
- Calcul de la section minimale d'aspiration (selon vitesse de l'air et perte de pression maxi de 1 hPa)
- Selon largeur à disposition = calcul de la hauteur des pannes
- Vérification du gain thermique

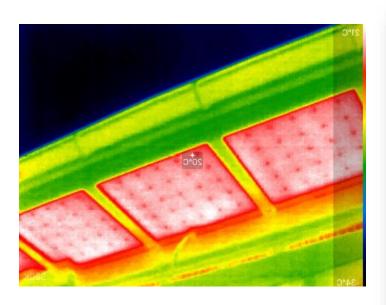








Aménagements parfois nécessaires


Récupération de chaleur sous tuiles

> Peut servir à aller chercher de l'air chaud sur un autre pignon ou une autre façade

Installations solaires thermovoltaïques

Puissance thermique = puissance électrique

Installations solaires thermovoltaïques

- Bonnes performances
- Aménagement plus complexe que RCST
- Rendement amélioré des PV +0.3 à +0.5% par °C de refroidissement

Exemple récupérateur 450 m² (L=25 m, H=0.24 m ; séchoir=150m²)

	Tôle	Fibrociment	Photovoltaïques
Gain thermique	+8.0°	+7.3°	+8.2°
Perte pression	0.37 hPa	0.45 hPa	0.50 hPa

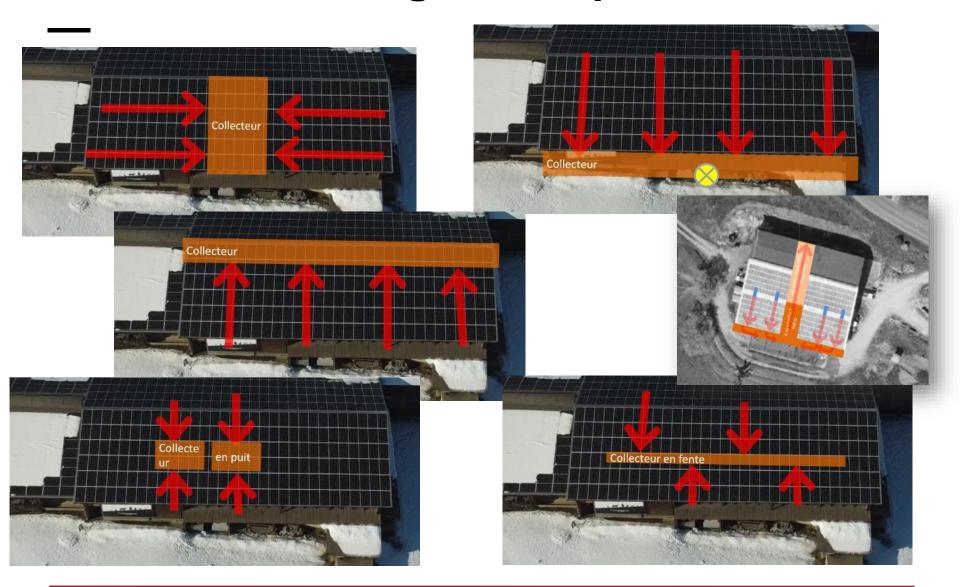
Source photo: internet

Respecter les prescriptions incendies fr-VD-NE

- Étable, entrepôt de fourrage, local d'affouragement = « bâtiment exposé au danger d'incendie »
 - → Si PV ≥ 1'200 m², couche de support en sous-toiture = RF1
 - → Si < 1'200 m², couche de support = RF3 (panneaux OSB = OK)

2.1 Notions relatives à l'utilisation des matériaux de construction

- 1 Les matériaux de construction sont classés dans les groupes suivants, selon leur réaction au feu (RF):
 - · RF1 (pas de contribution au feu);
 - RF2 (faible contribution au feu);
 - RF3 (contribution admissible au feu);
 - RF4 (contribution inadmissible au feu).

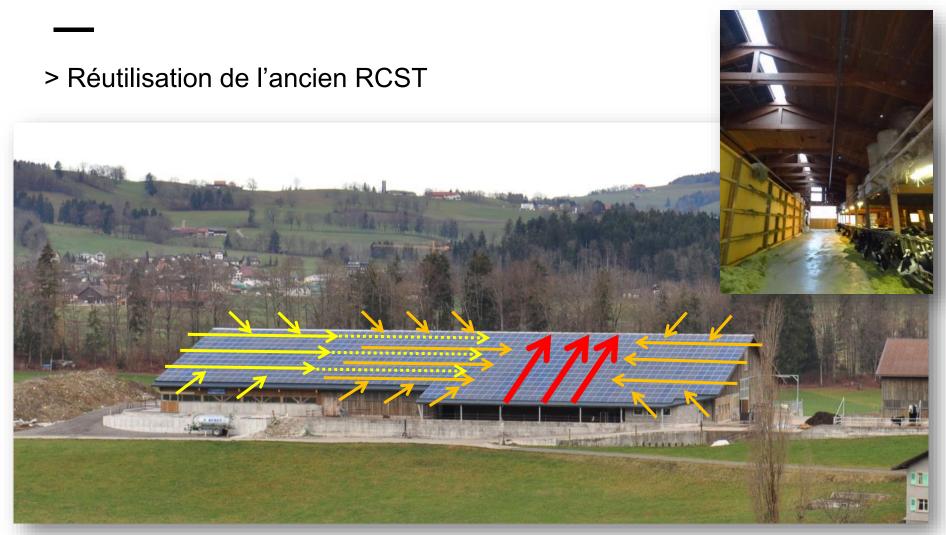

Assurer l'aération naturelle des PV

- Nécessite une disposition particulière, ou
- petite ventilation complémentaire ou ouverture

Nombreux aménagements possibles

Aspiration en fente centrale

Aspiration en pignon avec collecteur central


Grangeneuve

Aspiration en pignon avec collecteur central

Aspiration en pignon avec collecteur central

Cellules photo-voltaïques en panneaux intégrés

Lattage sur ancienne toiture (dessus)

Panneaux photovoltaïques en couverture intégrale (droite)

Aspiration au bas du toit et collecteur au faîte

Exploitation Moosboden, Melchnau

Aspiration pignon, PV intégrés, sur OSB

Extension au faîte du toit

- Prolongation de la toiture pour assurer la collecte d'air chaud
- Mieux que sous la toiture...

Source: Matthias Kittl, Landwirtschaftskammer Salzburg

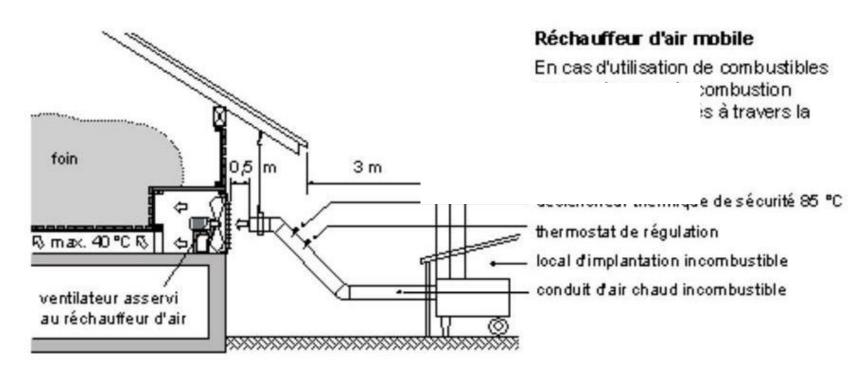
Extension au faîte du toit

> Canal collecteur au faîte installée dans un agrandissement de la toiture

Dachabsaugung mit PV-Anlage Genaue Berechnung nötig! Landwirtschaftskammer Salzburg

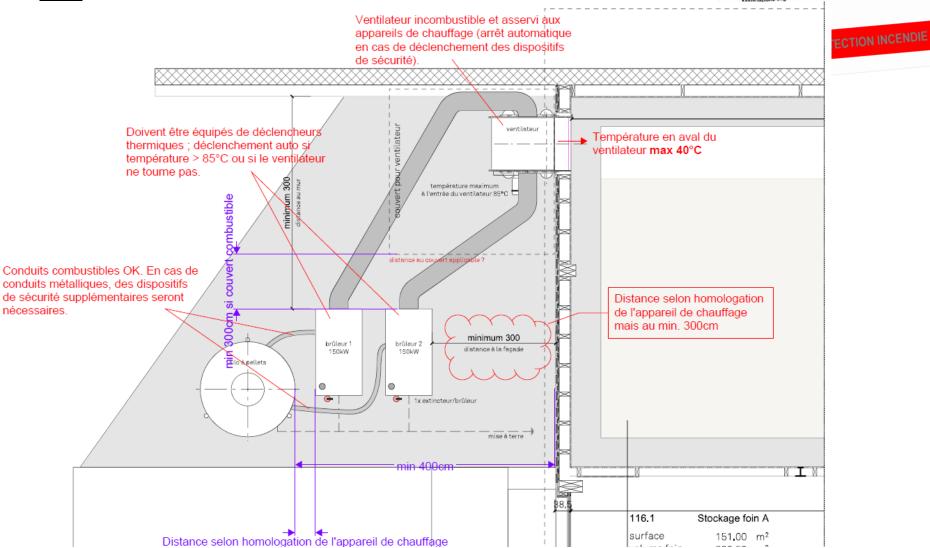
Source: Matthias Kittl, Landwirtschaftskammer

Chaudière à mazout


- > Solution bon marché à l'achat, assez chère à l'utilisation
- > Dès 10'000 CHF
- > Consommation ~10 à 15 l / h pour une chaudière de base
- > Émission de CO2

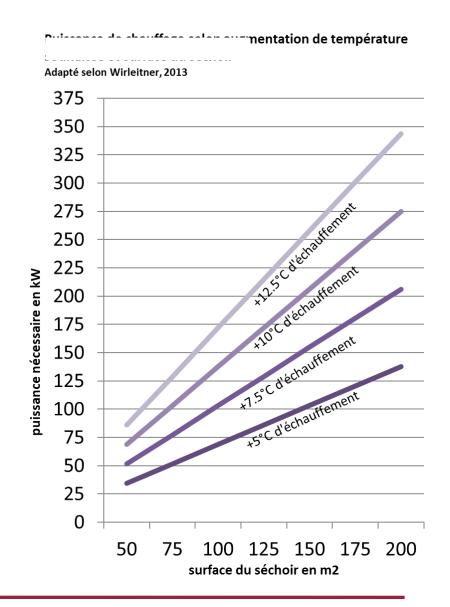
Prescriptions incendies

- > Plus de 3m de distance de la toiture pour la chaudière + cheminées
- > Beaucoup d'installations non conformes !



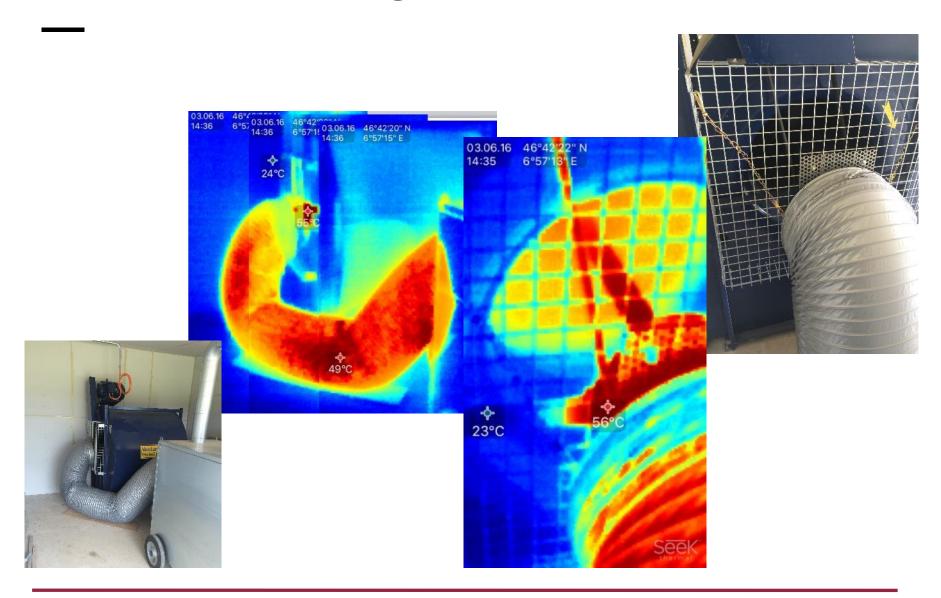
Source: ECAB 2021

Prescriptions incendies


Dimensionnement des chaudières

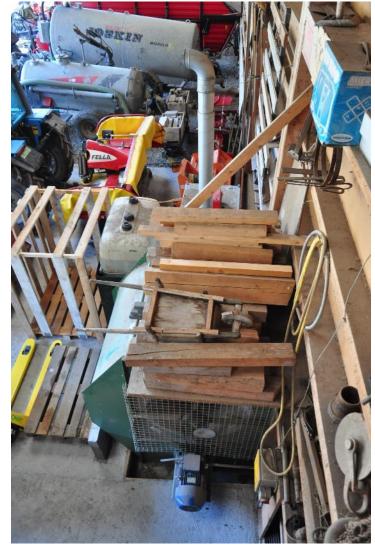
- > 12.5 kW pour +1°C et par tranche de 100m² de séchoir
- > Calcul précis : $P = qv \times 0.34 \times \Delta T$

P en [W] qv en [m³/h]


0,34 : Chaleur volumique de l'air en [Wh/m³.K]

ΔT : Ecart de température reçu ou perdu par l'air en [K]

Assurer le mélange de l'air chaud et froid


Assurer le mélange de l'air chaud et froid

Source: Antoine El Hayek

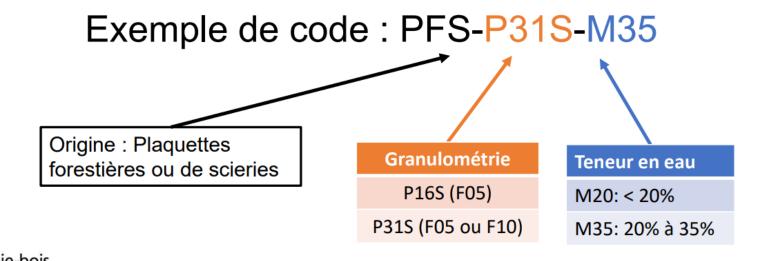
Ne pas aspirer les gaz d'échappement

Chaudière à bois : plusieurs solutions

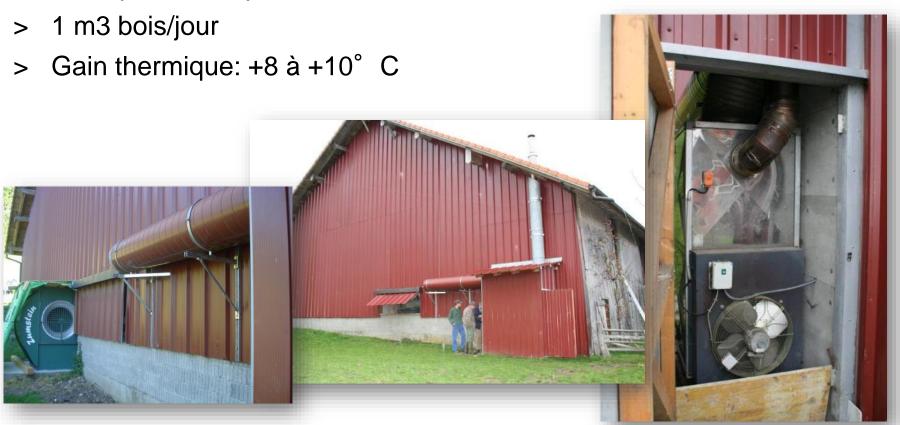
- > Plaquettes / bûches / pellets
- > En chaleur directe ou avec échangeur eau/air
- > Dimensionnement équivalent à chaudière à mazout

(Patrick Müller, Ernetswil, 2020)

Chaudière à plaquettes / copeaux / bois déchiqueté


- > Combustible le moins cher
- > Manutention souvent nécessaire
- > Investissement relativement élevé : 50'000 à 75'000 CHF pour 150 à 250 kW
- > Consommation ~2.5 m3 pour ~ 10 heures (chaudière à 150 kW)
- $> 1 \text{ I mazout} = 2.1 \text{ kg pellets} = 0.011 \text{ m}^3 \text{ plaquettes} (1 \text{ m}^3 = 900 \text{ kWh})$

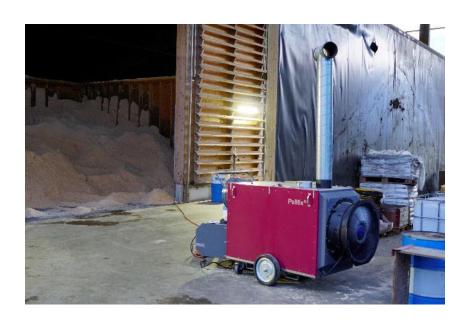
Chaudière à plaquettes / copeaux / bois déchiqueté


- Plus la puissance est faible, plus la qualité des plaquettes doit être irréprochable et plus la teneur en eau doit être faible
 - QM recommande pour des chaudières < 200 kW le type PFS-P16S-M20

Chaudière à bûches de bois

- > Très bon marché à l'achat, bois relativement bon marché, mais travail de remplissage
- > Exemple: 60kW pour 80m², < 10'000 CHF, tout manuel

Chaudière à bûches de bois



Source: Lasco

Chaudière à bois

- Investissements intermédiaires entre chaudières à bûches et celles à plaquettes
- > Prix du combustible majoritairement aligné sur prix du pétrole
- > Déplaçable

Chaudière à pellets de bois

Attentions aux prescriptions incendies

Chaudière à pellets de bois

> Location estivale pour 3'250 CHF de 50 à 250 kW + 1'200 CHF pour 3 boxes à pellets de 3000 kg pellets

Source photo: www.sutergroupe.ch

Plaquettes ou pellets?

1 I mazout = 2.1 kg pellets = 0.011 m³ plaquettes Émission CO2= 3 kg CO2eq / I mazout vs. 0.2 pour pellets

Hackschnitzel plaquettes cippato

24 m3 = 24 Sm3w = 25 % (Mischsortiment) 1 m3 = 0.833 MWh

Pellets

6 m3 w = 10.961 m3 = 3.333 MWh

Pour 20'000 kWh d'énergie finale

ct./kWh E _{utile}	Plaquettes	Pellets
Coûts pour l'investissement	9,0	6,0
Frais en combustible	7,0	10,0
Frais entretien et maintenance	3,0	1,5
Coût total de la valeur cible	16,0-20,0	

- Nouvelle installation ou assainissement installation fossile?
- QM recommande les plaquettes de qualité (séchées M20 et tamisées) pour les installations < 200 kW

Densité des pellets = 650-670 kg/m3

rendement énergétique : 1000litres mazout = 1000 kWh ±69.5 ct/kWh

plaquettes: 1 m3 de plaquettes sèches = 1000 KWh (+- 10%)

Gazéification de bois

- > Module Spanner avec une puissance électrique de 9 à 49 kWé et une puissance thermique de 25 à 111 kWth.
- > Gazéification de bois : briquettes courtes, granulés, copeaux de rabotage, plaquettes forestières, broyat de palettes
- > Exemple Thomas Helfer, Pensier

source photo: Spanner

Génératrice d'électricité - mazout

- > Chaleur directe
- > Solution éventuelle si ampérage insuffisant

source photo: internet

Chaleur de méthanisation

Exemple Roy, Porrentruy

> Mise en route 2008, couplage force/chaleur de 190 kW électriques et 210 kW thermiques, doublé en 2012

Source: Michel Roy, Porrentruy

Chaleur de méthanisation

Exemple Seedorf

Chaleur de méthanisation

Exemple Petermann

Accumulation d'eau chaude

- > Échangeur de chaleur eau/air
- > 3 m³ de stockage d'eau par heure et par tranche de 100kW de puissance

exemple 1 : séchoir demandant 150 kW de puissance avec inertie pour 12 heures = 54 m³ de stockage d'eau chaude

Ex2 : accumulateur d'eau chaude de 5'000 litres tient 2 heures si puissance attendue de 100 kW (Matthias Kittl, Landwsch.Kammer Salzburg)

Ex3: pour chauffer 1 litre d'eau de 1K, il faut 1.162 Wh. Donc si l'eau restitue 15° dans une installation de 100 kW, il faut un volume de 5'737 litres d'eau par heure.

https://forum.apper-solaire.org/viewtopic.php?t=102#:~:text=Exemples%20de%20calculs%20%3A,1.16%20%3D%2023200%20wh%20%3D%2023.2%20Kwh

Autres accumulations de chaleur

Béton

> Chauffage du sol béton avec gaines enterrées = accumulation de chaleur dans le béton

2 m³ béton stockent autant d'énergie que 1 m³ d'eau (source öKL, Wien 2017)

> Refroidissement de l'air de 1° par tranche de 10m de béton

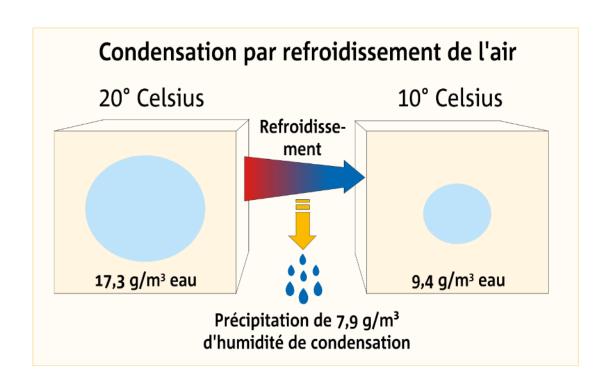
Gravier

- > 30-45 mm de diamètre
- > 11.4 m³ de gravier = volume nécessaire pour chaque heure et par tranche de 100kW de puissance

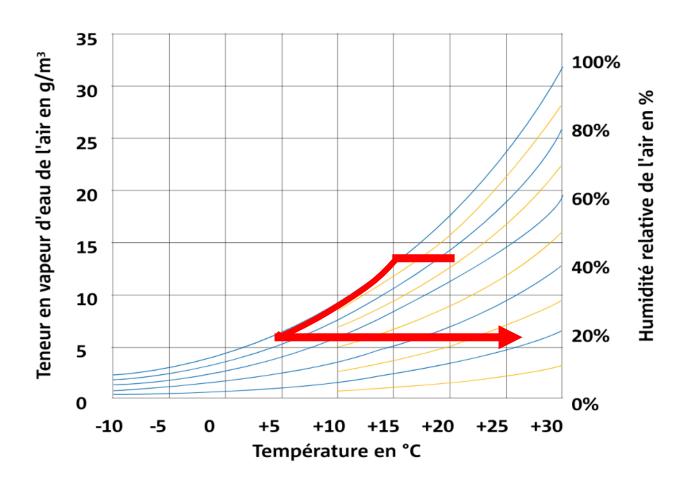
exemple : séchoir demandant 150 kW de puissance avec inertie pour 12 heures = 205 m³ de gravier

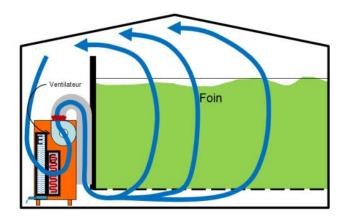
Déshumidificateur

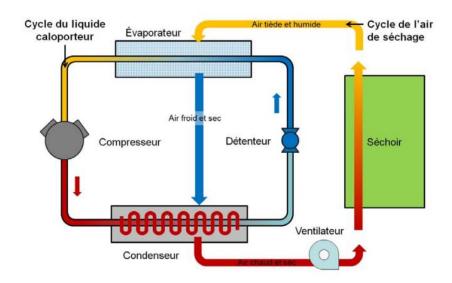
- > Diminution de l'humidité absolue et échauffement de l'air de +5 à +8°C
- > Puissance_ventilateur/puissance_déshumidificateur = 1/1 à 1/2
- > Coûts importants : ~100'000 CHF y compris circuit fermé
- > Consommation relativement faible d'énergie, mais énergie chère
- > Nécessite un certain entretien



Déshumidificateur


- > Condensation de l'eau contenue dans l'air par refroidissement
- > Gain thermique lors de la condensation


Valeurs du graphique pour environ 1'500 m d'altitude


Déshumidificateur : condenser pour sécher

Déshumidificateur

https://www.agrinova.qc.ca/wp-content/uploads/2016/09/Fiche_Sechage_foin_Agrinova_2oct2014.pdf

Déshumidificateur et circuit fermé

- > Plus l'air est humide, plus le déshumidificateur est efficace
- > Vitesse de l'air dans le condenseur à ~2 m/sec
- > Moins performant si températures <10 degrés
- > Entretien régulier (filtres)

Déshumidificateur sans circuit fermé

- > Exemple sans valorisation complète de l'énergie de condensation
- > Fermer le circuit de l'air permet de réduire de 20% la consommation électrique

Source: Pöllinger, Effizienzerhöhung von heutrocknungsanlagen, 2020

Déshumidificateur

Liste fournisseurs – état janvier 2021

<u>RTS</u>

Contact:

heutrocknung@aon.at

Site: www.rts-

heutrocknung.com/

Vidéo:

<u>Lasco</u>

Contact: office@lasco.at
Site: www.lasco.at/fr/

Vidéo:

www.lasco.at/fr/deshumidific ateur-dair-haytec-pour-lesechage/

(bas de page)

<u>HSR</u>

Contact: info@griesser-kaeltetechnik.ch

Site:

www.heutrocknung.com/fr/pr oduits

Vidéo:

www.heutrocknung.com/fr/lesysteme

Arwego

Contact:

a.schneider@arwego.de

Site: www.arwego.de/

Vidéo:

<u>Zemp</u>

Contact:

info@heutrocknung.net

Site:

www.heutrocknung.net/produ

kte/

Vidéo:

Frigortec

Contact: info@frigortec.de

Site: www.frigortec.com/fr/

Vidéo:

www.frigortec.com/fr/produits/agrifrigor/ (bas de page)

Agravent

Contact: info@agravent.com

Site:

www.agravent.com/geraete/

waermepumpenluftentfeuchter/

Vidéo:

<u>RMH</u>

Contact: info@sumag.ch

Site: www.2015.r-m- h.at/rmh-luftentfeuchter/

Vidéo:

